

# **Chemical Dosing Pots**

## **Overview & Sizing**

The Vira range of dosing pots provides a safe, controlled method of dosing chemicals into heating and chilled water systems with no interruption to the system operation.

Vira dosing pots are supplied as a complete package with all valves and tundish fitted to minimise time on site for installation. These cost effective, easy to install units facilitate simple, regular on-going maintenance of your heating or chilled water system.

For your safety, each Vira dosing pot is fitted with an integral safety valve that prevents fluid escaping under pressure if the top entry valve is opened before the flow and return valves are closed. Also, for your peace of mind, each unit is individually hydrostatically tested to 16 bar prior to despatch.

To cover all your requirements, the standard Vira range includes all sizes as 5 litres, 10 litres, 15 litres, 20 litres, 25 litres, 50 liters and bigger sizes.

| Specification                                    |                 |  |  |  |  |  |  |
|--------------------------------------------------|-----------------|--|--|--|--|--|--|
| Vessel                                           | Stainless Steel |  |  |  |  |  |  |
| Tundish                                          | Stainless Steel |  |  |  |  |  |  |
| Flow/ Return Isolation Valves                    | 1" BSP, S.Steel |  |  |  |  |  |  |
| Drain Valve                                      | 1" BSP, S.Steel |  |  |  |  |  |  |
| Finish                                           | Power Coated    |  |  |  |  |  |  |
| Operating Parameters                             |                 |  |  |  |  |  |  |
| Maximum Working Pressure 10 Bar                  |                 |  |  |  |  |  |  |
| Maximum System Temp.                             | 110° C          |  |  |  |  |  |  |
| Hydrostatic Test Pressure 16 Bar                 |                 |  |  |  |  |  |  |
| Approvals                                        |                 |  |  |  |  |  |  |
| Designed and manufactured in accordance with the |                 |  |  |  |  |  |  |
| Pressure Equipment Directive 97/23/EC            |                 |  |  |  |  |  |  |

### Sizing

The size of dosing pot installed in a system is not critical as multiple doses of chemicals can be put in to the system to reach the correct concentration. The benefits of using a smaller unit is that it is easier to physically handle and also allows for more accurate dosing. However, the time on site for performing multiple doses has to be considered; this factor should influence your decision when selecting dosing pots.

Note: Chilled water systems often require large volumes of glycol to be dosed in to the system; a larger dosing pot may be required for chilled water systems.

The formula below can be used as a guide to help you in your selection:

Boiler Power (kW) x 12 Litres/kW x 0.01 (based on 1% concentration\*) = Volume of chemical required

Example: Boiler Power 250kW x 12kW x 0.01 = 30 litres of chemical

You could use any of the following dosing pots for this installation:

\* 5 litre - dose 6 times

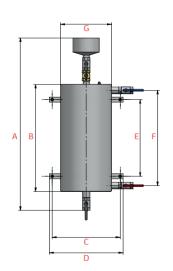
\* 10 litre - dose 3 times

\* 15 litre - dose 2 times

Confirm the required concentration level for the chemical being used

| Size<br>(Litres ) | Product<br>Code | Weight<br>KG |
|-------------------|-----------------|--------------|
| 5                 | VDK 5           | 12,0         |
| 10                | VDK 10          | 17,0         |
| 15                | VDK 15          | 24,0         |
| 20                | VDK 20          | 30,0         |
| 25                | VDK 25          | 41,0         |




#### Installation & Operation

#### INSTALLATION

| To ensure a fast, but safe    | For correct operation of the unit follow the instructions and diagram below. Where multiple       |
|-------------------------------|---------------------------------------------------------------------------------------------------|
| dispersal of chemical dose,   | dosing is required, repeat the steps as necessary until correct system concentration is achieved. |
| it is important that the unit |                                                                                                   |
| is installed correctly.       | *ISOLATE THE UNIT Close all Valves                                                                |
| Install the unit between the  | *DRAIN THE UNIT                                                                                   |
| flow and return pipework at   | Open the drain valve first, followed by the fill valve.                                           |
| the poing with the highest    |                                                                                                   |
| differential pressure.        | *FILL THE UNIT 🖳 🖳                                                                                |
|                               | Close the drain valve and pour dosing                                                             |
| Ensure the unit is securely   | chamical in to the unit through the tundish.                                                      |
| fixed to a wall using the     |                                                                                                   |
| integral wall mounting        | *BEGIN DOSING                                                                                     |
| brackets.                     | Fully open the inlet and outlet valves slowly.                                                    |
| Make certain that the         |                                                                                                   |
| drainage point is either      | Close all valves when dosing has completed.                                                       |
| piped to waste or that there  | Repeat the above steps if necessary.                                                              |
| is suitable space beneath     |                                                                                                   |
| the unit for collection of    |                                                                                                   |
| discharged fluid.             |                                                                                                   |
|                               |                                                                                                   |
|                               |                                                                                                   |
|                               |                                                                                                   |
|                               |                                                                                                   |

#### **Drawings & Dimensions**

| Cine | Cine Code | DIMENSIONS (mm) |     |     |     |     |     |     |  |
|------|-----------|-----------------|-----|-----|-----|-----|-----|-----|--|
| Size | Code      | А               | В   | С   | D   | E   | F   | G   |  |
| 5    | VDK 5     | 734             | 300 | 230 | 280 | 100 | 200 | 180 |  |
| 10   | VDK 10    | 884             | 450 | 230 | 280 | 250 | 350 | 180 |  |
| 15   | VDK 15    | 1084            | 650 | 230 | 280 | 450 | 550 | 180 |  |
| 20   | VDK 20    | 1034            | 600 | 270 | 319 | 400 | 500 | 219 |  |
| 25   | VDK 25    | 1134            | 700 | 270 | 319 | 500 | 600 | 219 |  |





### Sizing

The size of the dosing pot installed in a system is not critical as multiple doses of chemicals can be put into the system to reach the correct concentration. The benefits of using a smaller unit are that it is easier to physically handle and also allows for more accurate dosing. However, the time on site for performing multiple doses has to be considered; this factor should influence your decision when selecting dosing pots.

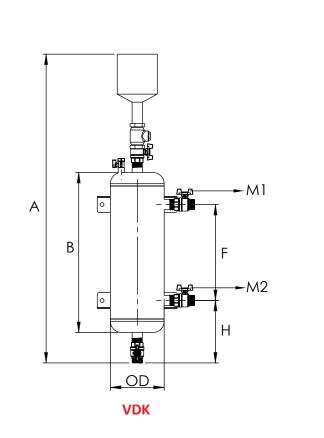
**Note:** Chilled water systems often require large volumes of glycol to be dosed into the system; a larger dosing pot may be required for chilled water systems.

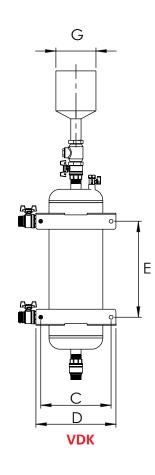
The formula below can be used as a guide to help you in your selection:

Boiler Power (kW) x 12 Litres/kW x 0.01 (based on 1% concentration\*) = Volume of chemical required

Example: Boiler Power 250kW x 12kW x 0.01 = 30 litres of chemical

You could may of the following dosing pots for this installation


5 liter - dose 6 times 10 liter - dose 3 times 15 liter - dose 2 times


Confirm the required concentration level for the chemical being used.



| To ensure a fast, but safe dispersal of chemical dose, it is important that the unit is installed correctly.                                           | For correct operation of the unit follow the instructions and diagram below. Where multiple dosing is required, repeat the steps as necessary until the correct system concentration is achieved. |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Install the unit between the flow and return pipework at the point with the highest differential pressure.                                             | *ISOLATE THE UNIT Close all Valves<br>*DRAIN THE UNIT<br>Open the drain valve first, followed by the fill valve.<br>*FILL THE UNIT                                                                |  |
| Ensure the unit is securely fixed to a wall using the integral wall mounting brackets.                                                                 | Close the drain valve and pour the dosing chemical into the unit through the tundish.                                                                                                             |  |
|                                                                                                                                                        | *BEGIN DOSING                                                                                                                                                                                     |  |
| Make certain that the drainage point is either piped to waste or that there is suitable space beneath the unit for the collection of discharged fluid. | Fully open the inlet and outlet valves slowly.<br>*COMPLETE DOSING<br>Close all valves when dasing has been completed.<br>Repeat the above steps in necessary.                                    |  |







|     | DIMENSIONS (mm)  |                       |        |        |        |        |        |        |        |        |    |    |
|-----|------------------|-----------------------|--------|--------|--------|--------|--------|--------|--------|--------|----|----|
|     | CAPACITY<br>(lt) | Connection<br>OD (mm) | A (mm) | B (mm) | C (mm) | D (mm) | E (mm) | F (mm) | G (mm) | H (mm) | M1 | M2 |
| VDK | 5                | 168,3                 | 847,9  | 324    | 220    | 250    | 180    | 180    | 125    | 168    | 1" | 1" |
| VDK | 10               | 168,3                 | 965,5  | 500    | 220    | 250    | 300    | 300    | 125    | 195    | 1″ | 1″ |
| VDK | 15               | 219,1                 | 923,9  | 450    | 350    | 400    | 250    | 250    | 125    | 195    | 1″ | 1″ |
| VDK | 20               | 219,1                 | 1073,9 | 600    | 350    | 400    | 400    | 400    | 125    | 195    | 1″ | 1″ |
| VDK | 25               | 219,1                 | 1173,9 | 700    | 350    | 400    | 500    | 500    | 125    | 195    | 1" | 1″ |
| VDK | 35               | 273                   | 1125,9 | 652    | 400    | 450    | 392    | 392    | 125    | 225    | 1″ | 1″ |
| VDK | 50               | 323,9                 | 1279,2 | 800    | 450    | 500    | 550    | 550    | 125    | 221    | 1″ | 1" |